82 research outputs found

    Voltage stability in unbalanced power systems: A new complementarity constraints-based approach

    Get PDF
    Voltage stability has become a fundamental issue in the new, liberalized markets due to the fact that the new power systems are approaching more and more the stability limits. Then, several approaches were proposed in the relevant literature to find the critical conditions and recently the problem was faced also with reference to unbalanced three phase power systems. The unbalances, in fact, can be responsible of more critical stability conditions than in balanced power systems. Continuation power flow and optimal power flows were applied to analyze such conditions. This paper deals with voltage stability analysis in unbalanced power systems and proposes a new optimization model to determine the critical point based on the use of complementarity constraints. Different formulations, with increasing complexity, of the optimization model are proposed and tested. In particular, the maximum stability margin is calculated by a single-stage or a multi-stage procedure that accounts for the relationship between the actual operating point and the maximum loading point. In addition, the multi-stage maximum stability margin problem is formulated also in a probabilistic framework to account for the uncertainties affecting the input data (e.g., load powers). An application is presented on a test system highlighting the feasibility and the goodness of the proposed technique. Both load and line unbalances are taken into account to capture the dependence of voltage stability on the level of unbalances

    NEW APPROACHES FOR VERY SHORT-TERM STEADY-STATE ANALYSIS OF AN ELECTRICAL DISTRIBUTION SYSTEM WITH WIND FARMS

    Get PDF
    Distribution networks are undergoing radical changes due to the high level of penetration of dispersed generation. Dispersed generation systems require particular attention due to their incorporation of uncertain energy sources, such as wind farms, and due to the impacts that such sources have on the planning and operation of distribution networks. In particular, the foreseeable, extensive use of wind turbine generator units in the future requires that distribution system engineers properly account for their impacts on the system. Many new technical considerations must be addressed, including protection coordination, steady-state analysis, and power quality issues. This paper deals with the very short-term, steady-state analysis of a distribution system with wind farms, for which the time horizon of interest ranges from one hour to a few hours ahead. Several wind-forecasting methods are presented in order to obtain reliable input data for the steady-state analysis. Both deterministic and probabilistic methods were considered and used in performing deterministic and probabilistic load-flow analyses. Numerical applications on a 17-bus, medium-voltage, electrical distribution system with various wind farms connected at different busbars are presented and discusse
    corecore